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Abstract

In proof theory the notion of canonical proof is rather basic, and it is usually
taken for granted that a canonical proof of a sentence must be unique up to certain
minor syntactical details (such as, e.g., change of bound variables). When setting
up a proof theory for equality one is faced with a rather unexpected situation
where there may not be a unique canonical proof of an equality statement. Indeed,
in a (1994–5) proposal for the formalisation of proofs of propositional equality
in the Curry–Howard style [41], we have already uncovered such a peculiarity.
Totally independently, and in a different setting, Hofmann & Streicher (1994)
[14] have shown how to build a model of Martin-Löf’s Type Theory in which
uniqueness of canonical proofs of identity types does not hold. The intention
here is to show that, by considering as sequences of rewrites and substitution,
it comes a rather natural fact that two (or more) distinct proofs may be yet
canonical and are none to be preferred over one another. By looking at proofs of
equality as rewriting (or computational) paths this approach will be in line with
the recently proposed connections between type theory and homotopy theory
via identity types, since elements of identity types will be, concretely, paths (or
homotopies).
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1 Introduction

There seems to be hardly any doubt that the so-called “identity types” are the most
intriguing concept of intensional Martin-Löf type theory [15, 53]. From the description
of a workshop entitled Identity Types – Topological and Categorical Structure, organi-
sed Nov 13–14, 2006, with support from the Swedish Research Council (VR) and the
mathematics departments of Uppsala University and Stockholm University:

“The identity type, the type of proof objects for the fundamental propo-
sitional equality, is one of the most intriguing constructions of intensional
dependent type theory (also known as Martin-Löf type theory). Its com-
plexity became apparent with the Hofmann-Streicher groupoid model of
type theory. This model also hinted at some possible connections between
type theory and homotopy theory and higher categories. Exploration of this
connection is intended to be the main theme of the workshop.”

Indeed, a whole new research avenue has recently been explored by people like Vladimir
Voevodsky [55] and Steve Awodey [3] in trying to make a bridge between type theory
and homotopy theory, mainly via the groupoid structure exposed in the Hofmann-
Streicher countermodel to the principle of Uniqueness of Identity Proofs (UIP). This
has opened the way to, in Awodey’s words, “a new and surprising connection between
Geometry, Algebra, and Logic, which has recently come to light in the form of an
interpretation of the constructive type theory of Per Martin-Löf into homotopy the-
ory, resulting in new examples of certain algebraic structures which are important in
topology”.

Furthermore, there have been several important strands in the area of categorical
semantics for Martin-Löf’s type theory, giving rise to rather unexpected links between
type theory, abstract homotopy theory and higher-dimensional category theory, as poin-
ted out by van den Berg and Garner [7]. And this is all due to the peculiar structure
brought about by the so-called identity types:

“All of this work can be seen as an elaboration of the following basic idea:
that in Martin-Löf type theory, a type A is analogous to a topological space;
elements a, b ∈ A to points of that space; and elements of an identity type
p, q ∈ IdA(a, b) to paths or homotopies p, q : a→ b in A.” [7]

Computational paths. Motivated by looking at equalities in type theory as arising
from the existence of computational paths between two formal objects, our purpose here
is to offer a different perspective on the role and the power of the notion of propositio-
nal equality as formalised in the so-called Curry-Howard functional interpretation. We
begin by recalling our previous observation [41] pertaining to the fact that the formula-
tion of the identity type by Martin-Löf, both in the intensional and in the extensional
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versions, did not take into account an important entity, namely, identifiers for sequences
of rewrites, and this has led to a false dichotomy. The missing entity has also made it
difficult to formulate the introduction rule for both the intensional and the extensional
version without having to resort to the use of the reflexivity operator “r” as in:

a : A

r(a) : IdA(a, a)

when this should come as a consequence of the general principle of equality saying that,
for all elements a of a type A, equality is by definition a reflexive relation, rather than
taking part of the definition of the identity type. Instead, if the introduction rule for
the identity type takes the form of:

a =s b : A

s(a, b) : IdA(a, b)

where the identifier ‘s’ is supposed to denote a sequence of rewrites and substitutions
which would have started from a and arrived at b, it becomes rather natural to see
members of identity types as computational (or rewriting) paths .2 By having the general
rules for equality defined as:

reflexivity symmetry transitivity

x : A

x =ρ x : A

x =t y : A

y =σ(t) x : A

x =t y : A y =u z : A

x =τ(t,u) z : A

(where ‘σ’ and ‘τ ’ are the symmetry and transitivity rewriting operators) one would
then be able to infer that

a : A

a =ρ a : A

ρ(a) : IdA(a, a)

Taking an identifier from the meta-language to the object-language. As we
can see from the above example, one may start from ‘a : A’, i.e. a is an element of
type A, and take the a to the object-language by inferring that ρ(a) : IdA(a, a). That
is to say, in the latter judgement, the object a is being predicated about in the object
language (‘a is equal to itself’). It is only via identity types that this can be done in
the framework of the Curry-Howard functional interpretation.

2An anonymous reviewer has pointed out that this is common in the “judgemental” approach to
logic: one finds the judgement that underlies a proposition (Cf. [32] and [19, 20]).
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Iteration. In the same aforementioned workshop, B. van den Berg in his contribution
“Types as weak omega-categories” draws attention to the power of the identity type in
the iterating types to form a globular set:

Fix a type X in a context Γ. Define a globular set as follows: A0 con-
sists of the terms of type X in context Γ, modulo definitional equality; A1

consists of terms of the types Id(X; p; q) (in context Γ) for elements p, q in
A0, modulo definitional equality; A2 consists of terms of well-formed types
Id(Id(X; p; q); r; s) (in context Γ) for elements p, q in A0, r, s in A1, modulo
definitional equality; etcetera...

Indeed, one may start from:

p =r q : X

r(p, q) : IdX(p, q)
and

p =s q : X

s(p, q) : IdX(p, q)

and move up one level as in:

r(p, q) =u s(p, q) : IdX(p, q)

u(r(p, q), s(p, q)) : IdIdX(p,q)(r(p, q), s(p, q))

and so on... This has been made precise by a theorem of Peter Lumsdaine [21] and,
independently, by Benno van den Berg and Richard Garner [6, 7] to the effect that, for
any type X in Martin-Löf’s (intensional) type theory, the globular set X̂ of terms of
type X; IdX ; IdIdX ; ... carries a natural weak ω-groupoid structure.

Among other things, this makes it possible to formalise UIP in the theory, as pointed
out in Hofmann–Streicher’s (1996) survey [15]:

“We will call UIP (Uniqueness of Identity P roofs) the following property.
If a1, a2 are objects of type A then for any proofs p and q of the proposition
“a1 equals a2” there is another proof establishing equality of p and q. (...)
Notice that in traditional logical formalism a principle like UIP cannot even
be sensibly expressed as proofs cannot be referred to by terms of the object
language and thus are not within the scope of propositional equality.”

The principle of UIP was originally rendered as [14]:

x : A, p : IdA(x, x) ` IdIdA(x,x)(p, rA(x))

or in the form of a variant for x and y not assumed to be necessarily equal:

x : A, y : A, p, q : IdA(x, y) ` IdIdA(x,y)(p, q)

Counter to the principle, put forward by Martin-Löf, that a type is determined by its
canonical object, the model of the identity type constructed by Hofmann & Streicher
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contains more than one canonical object, and therefore the UIP does not hold. Although
this is sharp contrast with the theory of meaning for type theory as developed mainly
by Martin-Löf, Prawitz and Dummett, it is in perfect agreement with an alternative
theory of meaning based on reduction rules as meaning-giving which we have been
advocating for some time now [33, 34, 35, 45, 46, 36, 37, 38, 39, 40].

Elimination rules and the general principles of equality. Another aspect of
Martin-Löf’s formulation of identity types which has posed difficulties in understanding
the notion of normal proofs of equality statements is the framing of elimination rules
for identity types as something of the following sort: Id-elimination

a : A b : A c : IdA(a, b)
[x:A]

d(x):C(x,x,r(x))
[x:A,y:A,z:IdA(x,y)]

C(x,y,z) type

J(c, d) : C(a, b, c)

together with the conversion rule: Id-conversion

a : A

[x : A]

d(x) : C(x, x, r(x))

[x : A, y : A, z : IdA(x, y)]

C(x, y, z) type

J(r(a), d(x)) = d(a/x) : C(a, a, r(a))

To the elimination operator ‘J’ it is sometimes associated the definition of the usual
properties of the equality relation:

“Surprisingly enough, the J-eliminator is sufficient for constructing terms
refl, symm, trans and subst inhabiting the types corresponding to the pro-
positions expressing reflexivity, symmetry, transitivity and replacement.”
[14]

Same as in [15]:

“The elimination operator J is motivated by the view of Id(A, , ) as an in-
ductively defined family with with constructor refl . Accordingly, J permits
one to define an object of type (a1, a2 : A)(s : Id(A, a1, a2)C(a1, a2, s) by
prescribing its behaviour for arguments of canonical form, i.e. a1 = a2 = a
and s = refl(A, a).

In the presence of Π-sets, this elimination operation J allows one to derive
the following replacement rule in the presence of Π-sets.

subst : (A : Set)(P : (a : A)Set)(a1, a2 : A)(s : Id(a1, a2))P (a1)→ P (a2)

satisfying
subst(refl(a), p) = p ”
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Nevertheless, in Martin-Löf’s type theory the general properties of equality are given at
the level of definitional equality, independently of the J elimination operator for identity
types. Moreover, as soon as the formulation of the rules for the identity types take into
account the aforementioned “missing entity”, and thus the existential force of proposi-
tional equality, the existence of proofs of transitivity and symmetry for propositional
equality follow from the application of the rules. Our formulation would be as in:

Id-elimination

c : IdA(x, y)

[x =t y : A]

d(t) : C

J(c, t́d(t)) : C

(where t́ is an abstraction over the variable ‘t’) with the following conversion rule:
Id-conversion

a =s b : A

s(a, b) : IdA(a, b)
Id-intro

[a =t b : A]

d(t) : C

J(s(a, b), t́d(t)) : C
Id-elim .β

a =s b : A

d(s/t) : C

giving us the equality:
J(s(a, b), t́d(t)) =β d(s/t)

With this formulation, we can see that it is by virtue of the elimination rule com-
bined with the general rules of equality on the level of judgements that one can prove
transitivity and symmetry for propositional equality:

Construction 1.1 (invA)

[c(x, y) : IdA(x, y)]

[x =t y : A]

y =σ(t) x : A

(σ(t))(y, x) : IdA(y, x)

J(c(x, y), (σ(t́))(y, x)) : IdA(y, x)

λc.J(c(x, y), (σ(t́))(y, x)) : IdA(x, y)→ IdA(y, x)

λy.λc.J(c(x, y), (σ(t́))(y, x)) : Πy : A.(IdA(x, y)→ IdA(y, x))

λx.λy.λc.J(c(x, y), (σ(t́))(y, x)) : Πx : A.Πy : A.(IdA(x, y)→ IdA(y, x))

where σ is the symmetry operator introduced by the general rule of symmetry given as
part of the definition of equality on the lefthand side.

Construction 1.2 (cmpA)
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[w(x,y):IdA(x,y)]
[s(y,z):IdA(y,z)]

[x=ty:A] [y=uz:A]
x=τ(t,u)z:A

(τ(t,u))(x,z):IdA(x,z)
J(s(y,z),ú(τ(t,u))(x,z)):IdA(x,z)

J(w(x,y),t́J(s(y,z),ú(τ(t,u))(x,z))):IdA(x,z)

λs.J(w(x,y),t́J(s(y,z),ú(τ(t,u))(x,z))):(IdA(y,z)→IdA(x,z))

λw.λs.J(w(x,y),t́J(s(y,z),ú(τ(t,u))(x,z))):(IdA(x,y)→(IdA(y,z)→IdA(x,z)))

λz.λw.λs.J(w(x,y),t́J(s(y,z),ú(τ(t,u))(x,z))):Πz:A.(IdA(x,y)→(IdA(y,z)→IdA(x,z)))

λy.λz.λw.λs.J(w(x,y),t́J(s(y,z),ú(τ(t,u))(x,z))):Πy:A.Πz:A.(IdA(x,y)→(IdA(y,z)→IdA(x,z)))

λx.λy.λz.λw.λs.J(w(x,y),t́J(s(y,z),ú(τ(t,u))(x,z))):Πx:A.Πy:A.Πz:A.(IdA(x,y)→(IdA(y,z)→IdA(x,z)))

The final proof terms above are called, respectively, invA and cmpA by Streicher [53]:

“Using J one can define operations

cmpA ∈ (Πx, y, z : A)IdA(x, y)→ IdA(y, z)→ IdA(x, z)

invA ∈ (Πx, y : A)IdA(x, y)→ IdA(y, x) ”

The groupoid laws. It so happens that the existence of cmpA and invA validates
the following groupoid laws as pointed out in Streicher’s talk at the aforementioned
workshop “Identity Types vs. Weak ω-Groupoids – Some Ideas and Problems” [53]:

(a) (Πx, y, z, u : A)
(Πf : IdA(x, y))(Πg : IdA(y, z))(Πh : IdA(z, u))
IdIdA(x,u)(cmpA(f, cmpA(g, h)), cmpA(cmpA(f, g), h))

(b) (Πx, y : A)IdIdA(x,y)(cmpA(r(x), f), f) ∧ IdIdA(y,x)(cmpA(g, r(y)), g)
(c) (Πx, y : A)(Πf : IdA(x, y))

IdIdA(x,x)(cmpA(f, invA(f)), r(x)) ∧ IdIdA(y,y)(cmpA(invA(f), f), r(y))

This makes type A an internal groupoid where the groupoid equations hold only in
the sense of propositional equality. Indeed, via the reduction rules defined over the
terms corresponding to equality proofs, one can see that the laws are validated. Just
to motivate the reductions between proofs of equality, let us recall that the rule of
symmetry is the only rule which changes the direction of an equation. So, its use must
be controlled. Here we give two reductions over proofs of equality which are related
to such a need for controlling the use of symmetry. (The rewriting system with all
reductions between terms of identity types is given in Definition 3.21.)

Definition 1.3 (reductions involving ρ and σ)

x =ρ x : A

x =σ(ρ) x : A
.sr x =ρ x : A

x =r y : A

y =σ(r) x : A

x =σ(σ(r)) y : A
.ss x =r y : A
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Associated rewritings:
σ(ρ) .sr ρ
σ(σ(r)) .ss r

By applying the rule of propositional equality to the level of IdIdA(x,x) we can get:

x =ρ x : A

x =σ(ρ) x : A

(σ(ρ))(x) : IdA(x, x)
.sr

x =ρ x : A

ρ(x) : IdA(x, x)

i.e., ‘(σ(ρ))(x)’ and ‘ρ(x)’ are two equal proofs of IdA(x, x). So,

σ(ρ) =sr ρ : IdA(x, x)

(sr)(σ(ρ), ρ) : IdIdA(x,x)(σ(ρ), ρ)

And similarly:

x =r y : A

y =σ(r) x : A

x =σ(σ(r)) y : A

(σ(σ(r)))(x, y) : IdA(x, y)
.ss

x =r y : A

r(x, y) : IdA(x, y)

Thus:
σ(σ(r)) =ss r : IdA(x, y)

(ss)(σ(σ(r)), r) : IdIdA(x,y)(σ(σ(r)), r)

Similarly, the transitivity operation on proofs of equality brings us the following
reductions:

Definition 1.4 (τ and τ)
x =t y : A y =r w : A

x =τ(t,r) w : A w =s z : A

x =τ(τ(t,r),s) z : A

.tt
x =t y : A

y =r w : A w =s z : A

y =τ(r,s) z : A

x =τ(t,τ(r,s)) z : A

Associated rewriting:
τ(τ(t, r), s) .tt τ(t, τ(r, s))

So,
x =t y : A y =r w : A

x =τ(t,r) w : A w =s z : A

x =τ(τ(t,r),s) z : A

(τ(τ(t, r), s))(x, z) : IdA(x, z)
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.tt

x =t y : A

y =r w : A w =s z : A

y =τ(r,s) z : A

x =τ(t,τ(r,s)) z : A

(τ(t, τ(r, s)))(x, z) : IdA(x, z)
Thus

τ(τ(t, r), s) =tt τ(t, τ(r, s)) : IdA(x, z)

(tt)(τ(τ(t, r), s), τ(t, τ(r, s))) : IdIdA(x,z)(τ(τ(t, r), s), τ(t, τ(r, s)))

Notice that, although the type IdIdA(x,z)(τ(τ(t, r), s), τ(t, τ(r, s))) is inhabited, i.e.
there is a proof-term of that type, this does not pressupose that, seeing t, r, s as functi-
ons, t ◦ (r ◦ s) = (t ◦ r) ◦ s. This is similar to Hofmann-Streicher’s statement on
Proposition 4.1 of [15]:

“If a1, a2, a3, a4 : A and s1 : IdA(a1, a2) and s2 : IdA(a2, a3) and s3 :
IdA(a3, a4) then

trans(s3, (trans(s2, s1)) =prop trans(trans(s3, s2), s1)”

(where ‘s1 =prop s2’ meant that the type IdIdA(a1,a2)(s1, s2) was inhabited). Notice again
that it was not required that s3 ◦ (s2 ◦ s1) = (s3 ◦ s2) ◦ s1.

The same observation is made by Warren [56]:

“For example, given terms f of type IdA(a, b) and g of type IdA(b, c), there
exists a “composite” (g · f) of type IdA(a, c). However, this composition
and the identities mentioned above fail to satisfy the actual category axioms
“on-the-nose”, but only up to the existence of terms of further “higher-
dimensional” identity types. Thus, given f and g as above together with a
further term h of type IdA(c, d), the type

IdIdA(a,d)(h · (g · f), (h · g) · f)

is inhabited; but it is not in general the case that h · (g · f) = (h · g) · f .”

The fact that the structure brought about by identity types satisfy the groupoid laws,
but only ‘at the propositional equality’, is also highlighted by Steve Awodey in his
recent survey:

“In the intensional theory, each type A is thus endowed by the identity types
IdA(a, b) with a non-trivial structure. Indeed, this structure was observed
by Hofmann and Streicher in [HS98] to satisfy conditions analogous to the
familiar laws for groupoids. Specifically, the posited refexivity of propositi-
onal equality produces identity proofs r(a) : IdA(a, a) for any term a : A,
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playing the role of a unit arrow 1a for a; and when f : IdA(a, b) is an identity
proof, then (corresponding to the symmetry of identity) there also exists a
proof f−1 : IdA(b, a), to be thought of as the inverse of f ; finally, when
f : IdA(a, b) and g : IdA(b, c) are identity proofs, then (corresponding to
transitivity) there is a new proof g ◦ f : IdA(a, c), thought of as the compo-
site of f and g. Moreover, this structure on each type A can be shown to
satisfy the usual groupoid laws, but significantly, only up to propositional
equality.” [3]

In what follows we will spell out a refinement of the approach to propositional
equality which was presented in a previous paper on the functional interpretation of
direct computations [47]. The intention, as already put forward above, is to offer
a formulation of a proof theory for propositional equality very much in the style of
identity types which, besides being a reformulation of Martin-Löf’s own intensional
identity types into one which dissolves what we see as a false dichotomy, turns out to
validate the groupoid laws as uncovered by Hofmann & Streicher as well as to refute
the principle of uniqueness of identity proofs. So, we are left with a sort of ‘weak’ type
theory in which the connections between the deductive system and the semantics of “a
type is a space of paths”, which is not so obvious in Martin-Löf’s own formulation of
intensional type theory, becomes rather natural: propositional equality is indeed the
type of (computational) sequences/paths between two elements of a type.

The main point of this paper is to show the connections between the approach to
propositional equality that we have been developing since the early 1990’s to the one put
forward by the Hofmann-Streicher-Voevodsky-Awodey tradition which has now come
to be documented in a phenomenal and collective production entitled Homotopy Type
Theory [16] (Aug 2013). This is useful because, in spite of the differences in details,
the approaches seem to have arrived at similar conclusions: elements of the identity
type are paths/sequences-of-rewrites from an object to another object of a certain type,
which gives rise to all these exciting connections to homotopy. The aim is not to make a
formal comparison of the two approaches, but rather to explore both the similarities and
the differences between them, and at the same time expose the interesting convergence
of groundbreaking conclusions with respect to the connections between type theory and
homotopy theory.

2 Normal form for proofs of equality

The clarification of the notion of normal form for equality reasoning took an impor-
tant step with the work of Statman in the late 1970’s [51, 52]. The concept of direct
computation was instrumental in the development of Statman’s approach. By way of
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motivation, let us take a simple example from the λ-calculus.

(λx.(λy.yx)(λw.zw))v .η (λx.(λy.yx)z)v .β (λy.yv)z .β zv
(λx.(λy.yx)(λw.zw))v .β (λx.(λw.zw)x)v .η (λx.zx)v .β zv
(λx.(λy.yx)(λw.zw))v .β (λx.(λw.zw)x)v .β (λw.zw)v .η zv

There is at least one sequence of conversions, i.e. one computational path, from the
initial term to the final term. (In this case we have given three!) Thus, in the formal
theory of λ-calculus, the term (λx.(λy.yx)(λw.zw))v is declared to be equal to zv.

Now, some natural questions arise:

1. Are the sequences/paths themselves normal?

2. Are there non-normal sequences/paths?

3. If yes, how are the latter to be identified and (possibly) normalized?

4. What happens if general rules of equality are involved?

Of course, if one considers only the β-contractions, the traditional choice is for the
so-called outermost and leftmost reduction [13].

Nevertheless, we are interested in an approach to these questions that would be
applicable both to λ-calculus and to proofs in Gentzen’s style Natural Deduction. As
rightly pointed out by Le Chenadec in [9], the notion of normal proof has been somewhat
neglected by the systems of equational logic: “In proof-theory, since the original work of
Gentzen (1969) on sequent calculus, much work has been devoted to the normalization
process of various logics, Prawitz (1965), Girard (1988). Such an analysis was lacking
in equational logic (the only exceptions we are aware of are Statman (1977), Kreisel and
Tait (1961)).” The works of Statman [51, 52] and Le Chenadec [9] represent significant
attempts to fill this gap. Statman studies proof transformations for the equational
calculus E of Kreisel–Tait [18]. Le Chenadec defines an equational proof system (the
LE system) and gives a normalization procedure.

What is a proof of an equality statement? The so-called Brouwer-Heyting-
Kolmogorov Interpretation defines logical connectives by taking proof, rather than
truth-values, as a primitive notion:

a proof of the proposition: is given by:
A ∧B a proof of A and a proof of B
A ∨B a proof of A or a proof of B
A→ B a function that turns a proof of A into a proof of B
∀xD.P (x) a function that turns an element a into a proof of P (a)
∃xD.P (x) an element a (witness) and a proof of P (a)
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Based on the Curry-Howard functional interpretation of logical connectives, one can
formulate the BHK-interpretation in formal terms as following:

a proof of the proposition: has the canonical form of:
A ∧B 〈p, q〉 where p is a proof of A and q is a proof of B
A ∨B i(p) where p is a proof of A or j(q) where q is a proof of B

(‘i’ and ‘j’ abbreviate ‘into the left/right disjunct’)
A→ B λx.b(x) where b(p) is a proof of B

provided p is a proof of A
∀xA.B(x) Λx.f(x) where f(a) is a proof of B(a)

provided a is an arbitrary individual chosen
from the domain A

∃xA.B(x) εx.(f(x), a) where a is a witness
from the domain A, f(a) is a proof of B(a)

(The term ‘εx.(f(x), a)’ is framed so as to formalise the notion of a function carrying
its own argument [42].)

A question remains, however:

What is a proof of an equality statement?

An answer to such a question will help us extend the BHK-interpretation with an
explanation of what is a proof of an equality statement:

a proof of the proposition: is given by:

t1 = t2 ?
(Perhaps a sequence of rewrites
starting from t1 and ending in t2?)

Two related questions naturally arise:

1. What is the logical status of the symbol “=”?

2. What would be a canonical/direct proof of t1 = t2?

In a previous work [49] we have tried to show how the framework of labelled natural
deduction can help us formulate a proof theory for the “logical connective” of propositi-
onal equality.3 The connective is meant to be used in reasoning about equality between

3An old question is in order here: what is a logical connective? We shall take it that from the point
of view of proof theory (natural deduction style) a logical connective is whatever logical symbol which
is analysable into rules of introduction and elimination.
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referents (i.e. the terms alongside formulas/types), as well as with a general notion of
substitution which is needed for the characterization of the so-called term declaration
logics [2].

In order to account for the distinction between the equalities that are:

definitional , i.e. those equalities that are given as rewrite rules (equations), orelse
originate from general functional principles (e.g. β, η, etc.),

and those that are:

propositional , i.e. the equalities that are supported (or otherwise) by an evidence
(a composition of rewrites),

we need to provide for an equality sign as a symbol for rewrite (i.e. as part of the
functional calculus on the terms), and an equality sign as a symbol for a relation
between referents (i.e. as part of the logical calculus on the formulas/types).

Single steps of reduction come from definitional equalities, and those single steps can
be composed leading to sequences of rewrites, which can then turned into a propositional
equality. It helps to remember that in “t : A”, the logical interpretation is that “t” is a
(functional) term, and “A” is a statement. So, the equality is propositional when it is
a statement, i.e., in “q : Id”, “Id” is a statement which is supported by the term “q”
(which, in its turn, can be an equational term like “a =s b”). So, while “q” will carry
definitional content (be it single or composed), “Id” will carry propositional content.

Definitional equalities. Let us recall from the theory of λ-calculus, that:

Definition 2.1 ([13], (Definition 6.2 and Notation 7.1)) The formal theory of λβη
equality has the following axioms:

(α) λx.M = λy.[y/x]M (y /∈ FV (M))
(β) (λx.M)N = [N/x]M
(η) (λx.Mx) = M (x /∈ FV (M))
(ρ) M = M

and the following inference rules:

(µ)
M = M ′

NM = NM ′ (τ)
M = N N = P

M = P

(ν)
M = M ′

MN = M ′N
(σ)

M = N

N = M

(ξ)
M = M ′

λx.M = λx.M ′

(ζ)
Mx = Nx

M = N
if x /∈ FV (MN)
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In Martin-Löf’s type theory the axioms are introduced as:

(β) N : A

[x : A]

M : B
(λx.M)N = M [N/x] : B

(η)
M : (Πx : A)B

(λx.Mx) = M : (Πx : A)B
(x /∈ FV (M))

(ρ)
M : A

M = M : A

(µ)
M = M ′ : A N : (Πx : A)B

NM = NM ′ : B
(τ)

M = N : A N = P : A

M = P : A

(ν)
N : A M = M ′ : (Πx : A)B

MN = M ′N : B
(σ)

M = N : A

N = M : A

(ξ)

[x : A]

M = M ′ : B
λx.M = λx.M ′ : (Πx : A)B

Propositional equality. Again, let us recall from the formal theory of λ-calculus,
that:

Definition 1.37 (β-equality) [13]
We say that P is β-equal or β-convertible to Q (notation P =β Q) iff Q can
be obtained from P by a finite (perhaps empty) series of β-contractions and
reversed β-contractions and changes of bound variables. That is, P =β Q
iff there exist P0, . . . , Pn (n ≥ 0) such that

(∀i ≤ n− 1)(Pi .1β Pi+1 or Pi+1 .1β Pi or Pi ≡α Pi+1).
P0 ≡ P, Pn ≡ Q.

NB: equality with an existential force.
The same happens with λβη-equality:

Definition 7.5 (λβη-equality) [13]
The equality-relation determined by the theory λβη is called =βη; that is,
we define

M =βη N ⇔ λβη `M = N.

Note again that two terms are λβη-equal if there exists a proof of their equality in
the theory of λβη-equality.
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Remark 2.2 In setting up a set of Gentzen’s ND-style rules for equality we need to
account for:
1. the dichotomy definitional versus propositional equality;
2. there may be more than one normal proof of a certain equality statement;
3. given a (possibly non-normal) proof, the process of bringing it to a normal form
should be finite and confluent.

The missing entity. Within the framework of the functional interpretation (à la
Curry–Howard [17]), the definitional equality is often considered by reference to a jud-
gement of the form:

a = b : A

which says that a and b are equal elements from domain or type A. Notice that the
‘reason’ why they are equal does not play any part in the judgement. This aspect of
‘forgetting contextual information’ is, one might say, the first step towards ‘extensiona-
lity’ of equality, for whenever one wants to introduce intensionality into a logical system
one invariably needs to introduce information of a ‘contextual’ nature, such as, where
the identification of two terms (i.e. equation) comes from.

We feel that a first step towards finding an alternative formulation of the proof
theory for propositional equality which takes care of the intensional aspect is to allow
the ‘reason’ for the equality to play a more significant part in the form of judgement.
We also believe that from the point of view of the logical calculus, if there is a ‘reason’
for two expressions to be considered equal, the proposition asserting their equality will
be true, regardless of what particular composition of rewrites (definitional equalities)
amounts to the evidence in support of the proposition concerned. Given these general
guidelines, we shall provide what may be seen as a middle ground solution between
the intensional [23, 22] and the extensional [24] accounts of Martin-Löf’s propositional
equality. The intensionality is taken care by the functional calculus on the labels,
while the extensionality is catered by the logical calculus on the formulas. In order to
account for the intensionality in the labels, we shall make the composition of rewrites
(definitional equalities) appear as indexes of the equality sign in the judgement with a
variable denoting a sequence of equality identifiers (we have seen that in the Curry–
Howard functional interpretation there are at least four ‘natural’ equality identifiers:
β, η, ξ and µ). So, instead of the form above, we shall have the following pattern for
the equality judgement:

a =s b : A

where ‘s’ is meant to be a sequence of equality identifiers.
In the sequel we shall be discussing in some detail the need to identify the kind of

definitional equality, as well as the need to have a logical connective of ‘propositional
equality’ in order to be able to reason about the functional objects (those to the left
hand side of the ‘:’ sign).
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Term rewriting. Deductive systems based on the Curry–Howard isomorphism [17]
have an interesting feature: normalization and strong normalization (Church–Rosser
property) theorems can be proved by reductions on the terms of the functional calculus.
Exploring this important characteristic, we have proved these theorems for the Labelled
Natural Deduction – LND [44, 50] via a term rewriting system constructed from the
LND-terms of the functional calculus [29]. Applying this same technique to the LND
equational fragment, we obtain the normalization theorems for the equational logic of
the Labelled Natural Deduction System [28, 30, 31].

This technique is used given the possibility of defining two measures of redundancy
for the LND system that can be dealt with in the object level: the terms on the
functional calculus and the rewrite reason (composition of rewrites), the latter being
indexes of the equations in the LND equational fragment.

In the LND equational logic [41], the equations have the following pattern:

a =s b : A

where one is to read: a is equal to b because of ‘s’ (‘s’ being the rewrite reason); ‘s’ is
a term denoting a sequence of equality identifiers (β, η, α, etc.), i.e. a composition of
rewrites. In other words, ‘s’ denotes the computational path from a to b.

In this way, the rewrite reason (reason, for short) represents an orthogonal me-
asure of redundancy for the LND , which makes the LND equational fragment an
“enriched” system of equational logic. Unlike the traditional equational logic systems,
in LND equational fragment there is a gain in local control by the use of reason. All the
proof steps are recorded in the composition of rewrites (reasons). Thus, consulting the
reasons, one should be able to see whether the proof has the normal form. We have then
used this powerful mechanism of controlling proofs to present a precise normalization
procedure for the LND equational fragment. Since the reasons can be dealt with in the
object level, we can employ a computational method to prove the normalization theo-
rems: we built a term rewriting system based on an algebraic calculus on the “rewrite
reasons”, which compute normal proofs. With this we believe we are making a step
towards filling a gap in the literature on equational logic and on proof theory (natural
deduction).
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Kreisel–Tait’s system. In [18] Kreisel and Tait define the system E for equality
reasoning as consisting of axioms of the form t = t, and the following rules of inference:

(E1)
E[t/x] t = u

E[u/x]

(E2)
s(t) = s(u)

t = u

(E3)
0 = s(t)

A
for any formula A

(E4n)
t = sn(t)

A
for any formula A

where t and u are terms, ‘0’ is the first natural number (zero), ‘s(-)’ is the successor
function.

Statman’s normal form theorem. In order to prove the normalization results for
the calculus E Statman defines two subsets of E: (i) a natural deduction based calculus
for equality reasoning NE; (ii) a sequent style calculus SE.

The NE calculus is defined as having axioms of the form a = a, and the rule of
substituting equals for equals:

(=)
E[a/u] a ≈ b

E[b/u]

where E is any set of equations, and a ≈ b is ambiguously a = b and b = a.
Statman arrives at various important results on normal forms and bounds for proof

search in NE. In this case, however, a rather different notion of normal form is being
used: the ‘cuts’ do not arise out of an inversion principle, as it is the case for the
logical connectives, but rather from a certain form of sequence of equations which
Statman calls computation, and whose normal form is called direct computation. With
the formulation of a proof theory for the ‘logical connective’ of propositional equality we
wish to analyse equality reasoning into its basic components: rewrites, on the one hand,
and statements about the existence of rewrites, on the other hand. This type of analysis
came to the surface in the context of constructive type theory and the Curry–Howard
functional interpretation.

Martin-Löf’s Identity type. There has been essentially two approaches to the pro-
blem of characterizing a proof theory for propositional equality, both of which originate
in P. Martin-Löf’s work on Intuitionistic Type Theory : the intensional [23] and the
extensional [24, 25] formulations.
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The extensional version. In his [24] and [25] presentations of Intuitionistic Type
Theory P. Martin-Löf defines the type of extensional propositional equality ‘Id’ (here
called ‘Idext’) as:

Idext-formation
A type a : A b : A

IdextA (a, b) type

Idext-introduction
a = b : A

r : IdextA (a, b)

Idext-elimination4

c : IdextA (a, b)

a = b : A

Idext-equality
c : IdextA (a, b)

c = r : IdextA (a, b)

Note that the above account of propositional equality does not ‘keep track of all
proof steps’: both in the Idext-introduction and in the Idext-elimination rules there is
a considerable loss of information concerning the deduction steps. While in the Idext-
introduction rule the ‘a’ and the ‘b’ do not appear in the ‘trace’ (the label/term alongside
the logical formula/type), the latter containing only the canonical element ‘r’, in the
rule of Idext-elimination all the trace that might be recorded in the term ‘c’ simply
disappears from label of the conclusion. If by ‘intensionality’ we understand a feature
of a logical system which identifies as paramount the concern with issues of context
and provability , then it is quite clear that any logical system containing Idext-type can
hardly be said to be ‘intensional’: as we have said above, neither its introduction rule
nor its elimination rule carry the necessary contextual information from the premise to
the conclusion.

The intensional version. Another version of the propositional equality, which has
its origins in Martin-Löf’s early accounts of Intuitionistic Type Theory [22, 23], and is
apparently in the most recent, as yet unpublished, versions of type theory, is defined
in [54] and [27]. In a section dedicated to the intensional vs. extensional debate, [54]
(p.633) says that:

4The set of rules given in [24] contained the additional elimination rule:

c : IdextA (a, b) d : C(r/z)

J(c, d) : C(c/z)

which may be seen as reminiscent of the previous intensional account of propositional equality [23].
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“Martin-Löf has returned to an intensional point of view, as in Martin-Löf
(1975), that is to say, t = t′ ∈ A is understood as “t and t′ are definitionally
equal”. As a consequence the rules for identity types have to be adapted.”

If we try to combine the existing accounts of the intensional equality type ‘IdA’ [23,
54, 27], here denoted ‘Idint’, the rules will look like:

Idint-formation
A type a : A b : A

IdintA (a, b) type

Idint-introduction
a : A

r(a) : IdintA (a, a)

a = b : A

r(a) : IdintA (a, b)

Idint-elimination

a : A b : A c : IdintA (a, b)
[x:A]

d(x):C(x,x,r(x))
[x:A,y:A,z:IdintA (x,y)]

C(x,y,z) type

J(c,d):C(a,b,c)

Idint-equality

a : A

[x : A]

d(x) : C(x, x, r(x))

[x : A, y : A, z : IdintA (x, y)]

C(x, y, z) type

J(r(a), d(x)) = d(a/x) : C(a, a, r(a))

With slight differences in notation, the ‘adapted’ rules for identity type given in [54]
and [27] resembles the one given in [23]. It is called intensional equality because there
remains no direct connection between judgements like ‘a = b : A’ and ‘c : IdintA (a, b)’.

A labelled proof theory for propositional equality. Now, it seems that an alter-
native formulation of propositional equality within the functional interpretation, which
will be a little more elaborate than the extensional IdextA -type, and simpler than the
intensional IdintA -type, could prove more convenient from the point of view of the ‘lo-
gical interpretation’. It seems that whereas in the former we have a considerable loss
of information in the Idext-elimination, in the sense that propositional equality and
definitional equality are collapsed into one, in the latter we have an Idint-elimination
too heavily loaded with (perhaps unnecessary) information. If, on the one hand, there
is an overexplicitation of information in Idint, on the other hand, in Idext we have
a case of underexplicitation. With the formulation of a proof theory for equality via
labelled natural deduction we wish to find a middle ground solution between those two
extremes.
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3 Labelled deduction

The functional interpretation of logical connectives via deductive systems which use
some sort of labelling mechanism [25, 11, 12] can be seen as the basis for a general
framework characterizing logics via a clear separation between a functional calculus on
the labels , i.e. the referents (names of individuals, expressions denoting the record of
proof steps used to arrive at a certain formula, names of ‘worlds’, etc.) and a logical
calculus on the formulas. The key idea is to make these two dimensions as harmonious
as possible, i.e. that the functional calculus on the labels matches the logical calculus
on the formulas at least in the sense that to every abstraction on the variables of
the functional calculus there corresponds a discharge of an assumption-formula of the
logical calculus. One aspect of such interpretation which stirred much discussion in the
literature of the past ten years or so, especially in connection with Intuitionistic Type
Theory [25], was that of whether the logical connective of propositional equality ought
to be dealt with ‘extensionally’ or ‘intensionally’. Here we attempt to formulate what
appears to be a middle ground solution, in the sense that the intensional aspect is dealt
with in the functional calculus on the labels, whereas the extensionality is kept to the
logical calculus. We also intend to demonstrate that the connective of propositional
equality (cf. Aczel’s [1] ‘Id’) needs to be dealt with in a similar manner to ‘Skolem-
type’ connectives (such as disjunction and existential quantification), where notions like
hiding , choice and dependent variables play crucial rôles.

3.1 Identifiers for (compositions of) equalities

In the functional interpretation, where a functional calculus on the labels go hand in
hand with a logical calculus on the formulas, we have a classification of equalities,
whose identifications are carried along as part of the deduction: either β-, η-, ξ-, µ-
or α- equality will have been part of an expression labelling a formula containing ‘Id’.
There one finds the key to the idea of ‘hiding’ in the introduction rule, and opening
local (Skolem-type) assumptions in the elimination rule. (Recall that in the case of
disjunction we also have alternatives: either into the left disjunct, or into the right
disjunct.) So, we believe that it is not unreasonable to start off the formalization
of propositional equality with the parallel to the disjunction and existential cases in
mind. Only, the witness of the type of propositional equality are not the ‘a’s and ‘b’s of
‘a = b : A’, but the actual (sequence of) equalities (β-, η-, ξ-, α-) that might have been
used to arrive at the judgement ‘a =s b : A’ (meaning ‘a = b’ because of ‘s’), ‘s’ being
a sequence made up of β-, η-, ξ- and/or α-equalities, perhaps with some of the general
equality rules of reflexivity, symmetry and transitivity. So, in the introduction rule of
the type we need to form the canonical proof as if we were hiding the actual sequence.
Also, in the rule of elimination we need to open a new local assumption introducing a
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new variable denoting a possible sequence as a (Skolem-type) new constant. That is, in
order to eliminate the connective ‘IdA’ (i.e. to deduce something from a proposition like
‘IdA(a, b)’), we start by choosing a new variable to denote the reason why the two terms
are equal: ‘let t be an expression (sequence of equalities) justifying the equality between
the terms’. If we then arrive at an arbitrary formula ‘C’ labelled with an expression
where the t still occurs free, then we can conclude that the same C can be obtained
from the Id-formula regardless of the identity of the chosen t, meaning that the label
alongside C in the conclusion will have been abstracted from the free occurrences of t.

Observe that now we are still able to ‘keep track’ of all proof steps (which does not
happen with Martin-Löf’s IdextA -type) [24, 25], and we have an easier formulation (as
compared with Martin-Löf’s IdintA -type) [23] of how to perform the elimination step.

3.2 The proof rules

In formulating the propositional equality connective, which we shall identify by ‘Id’, we
shall keep the pattern of inference rules essentially the same as the one used for the other
logical connectives (as in, e.g. [42]), and we shall provide an alternative presentation of
propositional equality as follows:

Id-formation
A type a : A b : A

IdA(a, b) type

Id-introduction

a =s b : A

s(a, b) : IdA(a, b)

a =s b : A a =t b : A s =z t : IdA(a, b)

s(a, b) =ξ(z) t(a, b) : IdA(a, b)

(Notice that the ξ rule for IdA has an extra hypothesis, which, though apparently
circular, is concerned with making sure that not all sequences of rewrites from a to b
are definitionally equal: in order to be declared ξ-equal, two sequences need to be equal
from some other reason.)

Id-elimination

p : IdA(a, b)

[a =t b : A]

d(t) : C

J(p, t́d(t)) : C

p =r q : IdA(a, b)

[a =t b : A]

d(t) : C

J(p, t́d(t)) =µ(r) J(q, t́d(t)) : C

Id-reduction

a =s b : A

s(a, b) : IdA(a, b)
Id-intr

[a =t b : A]

d(t) : C

J(s(a, b), t́d(t)) : C
Id-elim .β

a =s b : A

d(s/t) : C
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giving rise to the equality

J(s(a, b), t́d(t)) =β d(s/t) : C

Id-induction

e : IdA(a, b)

[a =t b : A]

t(a, b) : IdA(a, b)
Id-intr

J(e, t́t(a, b)) : IdA(a, b)
Id-elim .η e : IdA(a, b)

giving rise to the equality

J(e, t́t(a, b)) =η e : IdA(a, b)

where ‘́ ’ is an abstractor which binds the occurrences of the (new) variable ‘t’ introduced
with the local assumption ‘[a =t b : A]’ as a kind of ‘Skolem’-type constant denoting the
(presumed) ‘reason’ why ‘a’ was assumed to be equal to ‘b’. (Recall the Skolem-type
procedures of introducing new local assumptions in order to allow for the elimination of
logical connectives where the notion of ‘hiding’ is crucial, e.g. disjunction and existential
quantifier – in [42].)

Now, having been defined as a ‘Skolem’-type connective, ‘Id’ needs to have a con-
version stating the non-interference of the newly opened branch (the local assumption
in the Id-elimination rule) with the main branch. Thus, we have:

Id-(permutative) reduction

e : IdA(a, b)

[a =t b : A]

d(t) : C

J(e, t́d(t)) : C

w(J(e, t́d(t))) : W
r .ζ

e : IdA(a, b)

[a =t b : A]

d(t) : C

w(d(t)) : W
r

J(e, t́w(d(t))) : W

provided w does not disturb the existing dependencies in the term e (the main branch),
i.e. provided that rule ‘r’ does not discharge any assumption on which ‘IdA(a, b)’ de-
pends. The corresponding ζ-equality is:

w(J(e, t́d(t))) =ζ J(e, t́w(d(t)))

The equality indicates that the operation w can be pushed inside the -́abstraction term,
provided that it does not affect the dependencies of the term e.

Since we are defining the logical connective ‘Id’ as a connective which deals with
singular terms, where the ‘witness’ is supposed to be hidden, we shall not be using
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direct elimination like Martin-Löf’s Idext-elimination. Instead, we shall be using the
following Id-elimination:

e : IdA(a, b)

[a =t b : A]

d(t) : C

J(e, t́d(t)) : C

e =s f : IdA(a, b)

[a =t b : A]

d(t) : C

J(e, t́d(t)) =µ(s) J(f, t́d(t)) : C

The elimination rule involves the introduction of a new local assumption (and corre-
sponding variable in the functional calculus), namely ‘[a =t b : A]’ (where ‘t’ is the new
variable) which is only discharged (and ‘t’ bound) in the conclusion of the rule. The
intuitive explanation would be given in the following lines. In order to eliminate the
equality Id-connective, where one does not have access to the ‘reason’ (i.e. a sequence
of ‘β’, ‘η’, ‘ξ’ or ‘ζ’ equalities) why the equality holds because ‘Id’ is supposed to be
a connective dealing with singular terms (as are ‘∨’ and ‘∃’), in the first step one has
to open a new local assumption supposing the equality holds because of, say ‘t’ (a new
variable). The new assumption then stands for ‘let t be the unknown equality’. If
a third (arbitrary) statement can be obtained from this new local assumption via an
unspecified number of steps which does not involve any binding of the new variable ‘t’,
then one discharges the newly introduced local assumption binding the free occurrences
of the new variable in the label alongside the statement obtained, and concludes that
that statement is to be labelled by the term ‘J(e, t́d(t))’ where the new variable (i.e. t)
is bound by the ‘́ ’-abstractor.

Another feature of the Id-connective which is worth noticing at this stage is the
equality under ‘ξ’ of all its elements (see second introduction rule). This does not
mean that the labels serving as evidences for the Id-statement are all identical to a
constant (cf. constant ‘r’ in Martin-Löf’s Idext-type), but simply that if two (sequences
of) equality are obtained as witnesses of the equality between, say ‘a’ and ‘b’ of domain
A, then they are taken to be equal under ξ-equality. It would not seem unreasonable
to think of the Id-connective of propositional equality as expressing the proposition
which, whenever true, indicates that the two elements of the domain concerned are
equal under some (unspecified, hidden) composition of definitional equalities. It is as
if the proposition points to the existence of a term (witness) which depends on both
elements and on the kind of equality judgements used to arrive at its proof. So, in
the logical side, one forgets about what was the actual witness. Cf. the existential
generalization:

F (t)

∃x.F (x)

where the actual witness is in fact ‘abandoned’. Obviously, as we are interested in
keeping track of relevant information introduced by each proof step, in labelled natural
deduction system the witness is not abandoned, but is carried over as an unbounded
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name in the label of the corresponding conclusion formula.

t : A f(t) : F (t)

εx.(f(x), t) : ∃xA.F (x)

Note, however, that it is carried along only in the functional side, the logical side not
keeping any trace of it at all.

Now, notice that if the functional calculus on the labels is to match the logical
calculus on the formulas, than we must have the resulting label on the left of the ‘.β’ as
β-convertible to the concluding label on the right. So, we must have the convertibility
equality:

J(s(a, b), t́d(t)) =β d(s/t) : C

The same holds for the η-equality:

J(e, t́t(a, b)) =η e : IdA(a, b)

Parallel to the case of disjunction, where two different constructors distinguish the
two alternatives, namely ‘i’ and ‘j’, we here have any (sequence of) equality identifiers
(‘β’, ‘η’, ‘µ’, ‘ξ’, etc.) as constructors of proofs for the Id-connective. They are meant
to denote the alternatives available.

Function extensionality. In setting out to build a proof of functional extensionality
using our formulation of the Id-type, i.e.:

ΠfA→BΠgA→B(ΠxAIdB(APP (f, x), APP (g, x))→ IdA→B(f, g))

we end up proving a weakened version which says that if A is non-empty, then the
above principle of function extensionality over A→ B holds:

A→ (ΠfA→BΠgA→B(ΠxAIdB(APP (f, x), APP (g, x))→ IdA→B(f, g)))

As a matter of fact, in type theory, when the type A is empty, one can prove that the
type A→ B has only one member, i.e., λx.x, but then every (closed) lambda expression
denotes that member. This phenomenon is brought up in one of Nuprl’s primitives
(http://www.cs.cornell.edu/home/sfa/Nuprl/NuprlPrimitives/Xvoid_doc.html):

Thm* Void→ A =ext {λx.x :Void→ A}
The last theorem above states that Void→ A has only the one member
(λx.x). This is a degenerate function in that it cannot be applied to anything
in Void. Indeed, the body of the function expression is irrelevant since it
will never be evaluated as part of application to any argument of type Void.

Thm* (λx.whatever) = (λx.x) ∈ Void→ A

So, although Void→ A has only one member, every (closed) lambda expres-
sion denotes that member.
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In the proof shown at the Appendix B, notice that the leftmost occurrence of the
variable z in the proof term of the formula immediately above the conclusion is free.
So, in type theory we can apply →-introduction and do an abstraction on the variable,
discharging the assumption [z : A], and thus introduction the implication: A implies
the premiss of the rule.

General rules of equality. Apart from the already mentioned ‘constants’ (identi-
fiers) which compose the reasons for equality (i.e. the indexes to the equality on the
functional calculus), it is reasonable to expect that the following rules are taken for
granted: reflexivity , symmetry and transitivity .

Substitution without involving quantifiers. We know from logic programming,
i.e. from the theory of unification, that substitution can take place even when no quan-
tifier is involved. This is justified when, for some reason a certain referent can replace
another under some condition for identifying the one with the other.

Now, what would be counterpart to such a ‘quantifier-less’ notion of substitution
in a labelled natural deduction system. Without the appropriate means of handling
equality (definitional and propositional) we would hardly be capable of finding such a
counterpart. Having said all that, let us think of what we ought to do at a certain stage
in a proof (deduction) where the following two premises would be at hand:

a =g y : A and f(a) : P (a)

We have that a and y are equal (‘identifiable’) under some arbitrary sequence of equa-
lities (rewrites) which we name g. We also have that the predicate formula P (a) is
labelled by a certain functional expression f which depends on a. Clearly, if a and y
are ‘identifiable’, we would like to infer that P , being true of a, will also be true of y. So,
we shall be happy in inferring (on the logical calculus) the formula P (y). Now, given
that we ought to compose the label of the conclusion out of a composition of the labels
of the premises, what label should we insert alongside P (y)? Perhaps various good
answers could be given here, but we shall choose one which is in line with our ‘keeping
record of what (relevant) data was used in a deduction’. We have already stated how
much importance we attach to names of individuals, names of formula instances, and
of course, what kind of deduction was performed (i.e. what kind of connective was in-
troduced or eliminated). In this section we have also insisted on the importance of,
not only ‘classifying’ the equalities, but also having variables for the kinds of equalities
that may be used in a deduction. Let us then formulate our rule of ‘quantifier-less’
substitution as:

a =g y : A f(a) : P (a)

g(a, y) · f(a) : P (y)
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which could be explained in words as follows: if a and y are ‘identifiable’ due to a
certain g, and f(a) is the evidence for P (a), then let the composition of g(a, y) (the
label for the propositional equality between a and y) with f(a) (the evidence for P (a))
be the evidence for P (y).

By having this extra rule of substitution added to the system of rules of inference,
we are able to validate one half of the so-called ‘Leibniz’s law’, namely:

∀xA∀yA.(IdA(x, y)→ (P (x)→ P (y)))

The LND equational fragment. As we already mentioned, in the LND equational
logic, the equations have an index (the reason) which keeps all proof steps. The reasons
is defined by the kind of rule used in the proof and the equational axioms (definitional
equalities) of the system. The rules are divided into the following classes: (i) general
rules; (ii) subterm substitution rule; (iii) ξ- and µ-rules.

Since the LND system is based on the Curry–Howard isomorphism [17], terms repre-
sent proof constructions, thus proof transformations correspond to equalities between
terms. In this way, the LND equational logic can deal with equalities between LND
proofs. The proofs in the LND equational fragment which deals with equalities between
deductions are built from the basic proof transformations for the LND system, given in
[44, 42, 50]. These basic proof transformations form an equational system, composed
by definitional equalities (β, η and ζ).

General rules.

Definition 3.1 (equation) An equation in LNDEQ is of the form:

s =r t : A

where s and t are terms, r is the identifier for the rewrite reason, and A is the type
(formula).

Definition 3.2 (system of equations) A system of equations S is a set of equations:

{s1 =r1 t1 : A1, . . . , sn =rn tn : An}

where ri is the rewrite reason identifier for the ith equation in S.

Definition 3.3 (rewrite reason) Given a system of equations S and an equation
s =r t : A, if S ` s =r t : A, i.e. there is a deduction/computation of the equation
starting from the equations in S, then the rewrite reason r is built up from:

(i) the constants for rewrite reasons: { ρ, β, η, ζ };
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(ii) the ri’s;

using the substitution operations:

(iii) subL;

(iv) subR;

and the operations for building new rewrite reasons:

(v) σ, τ , ξ, µ.

Definition 3.4 (general rules of equality) The general rules for equality (reflexi-
vity, symmetry and transitivity) are defined as follows:

reflexivity symmetry transitivity

x : A

x =ρ x : A

x =t y : A

y =σ(t) x : A

x =t y : A y =u z : A

x =τ(t,u) z : A

The “subterm substitution” rule. Equational logic as usually presented has the
following inference rule of substitution:

s = t

sθ = tθ

where θ is a substitution.
Note that the substitution θ “appeared” in the conclusion of the rule. As rightly

pointed out by Le Chenadec in [9], from the viewpoint of the subformula property
(objects in the conclusion of some inference should be subobjects of the premises), this
rule is unsatisfactory. He then defines two rules:

IL
M = N C[N ] = O

C[M ] = O
IR

M = C[N ] N = O

M = C[O]

where M , N and O are terms and the context C[ ] is adopted in order to distinguish
subterms.

In [29] we have formulated an inference rule called “subterm substitution” which
deals in a explicit way5 with substitutions. In fact, the LND [44, 50] can be seen as an
enriched system which brings to the object language terms, and now substitutions.

5In [44] de Queiroz and Gabbay recall Girard, who describes the intimate connections between
constructivity and explicitation, and claim that “...one of the aims of inserting a label alongside
formulas (accounting for the steps made to arrive at each particular point in the deduction) is exactly
that of making explicit the use of formulas (and instances of formulas and individuals) throughout a
deduction ...”



272 R.J.G.B. de Queiroz, A.G. de Oliveira and A.F. Ramos

Definition 3.5 (subterm substitution) The rule of “subterm substitution” is fra-
med as follows:

x =r C[y] : A y =s u : A′

x =subL(r,s) C[u] : A

x =r w : A′ C[w] =s u : A

C[x] =subR(r,s) u : A

where C is the context in which the subterm detached by ‘[ ]’ appears and A′ could
be a subdomain of A, equal to A or disjoint to A. (C[u] is the result of replacing all
occurrences of y by u in C.6

The symbols subL and subR denote in which side (L – left or R – right) is the
premiss that contains the subterm to be substituted.

Note that the transitivity rule previously defined can be seen as a special case for
this rule when A′ = A and the context C is empty.

The ξ- and µ-rules. In the Curry–Howard “formulae-as-types” interpretation [17],
the ξ-rule7 states when two canonical elements are equal, and the µ-rule8 states when
two noncanonical elements are equal. So, each introduction rule for the LND system
has associated to it a ξ-rule and each elimination rule has a related µ-rule. For instance,
the ξ-rule and µ-rule for the connective ∧ are defined as follows:

x =u y : A s : B
〈x, s〉 =ξ1(u) 〈y, s〉 : A ∧B

x : A s =v t : B
〈x, s〉 =ξ2(v) 〈x, t〉 : A ∧B

6We should like to thank an anonymous referee who pointed out the ambiguity which would remain
in case this condition is not made clear.

7The ξ-rule is the formal counterpart to Bishop’s constructive principle of definition of a set [8]
(page 2) which says: “To define a set we prescribe, at least implicitly, what we have (the constructing
intelligence) must to do in order to construct an element of the set, and what we must do to show
that two elements of the set are equal.” Cf. also [8] (page 12) Bishop defines a product of set as “The
cartesian product, or simply product , X ≡ X1× . . .×Xn of sets X1, X2, . . . , Xn is defined to be the set
of all ordered n-tuples (x1, . . . , xn) and (y1, . . . , yn) of X are equal if the coordinates xi and yi are equal
for each i.” See also [25] (p.8): “... a set A is defined by prescribing how a canonical element of A is
formed as well as how two equal canonical elements of A are formed.” We also know from the theory of
Lambda Calculus the definition of ξ-rule, see e.g. [5] (pp. 23 and 78): “ξ : M = N ⇒ λx.M = λx.N”

8The µ-rule is also defined in the theory of Lambda Calculus, see e.g. [26]: “The equational axioms
and inference rules are as follows, where [N/x]M denotes substitution of N for x in M . . . .

(µ)
Γ BM1 = M2 : σ ⇒ τ Γ B N1 = N2 : σ

Γ BM1N1 = M2N2 : τ
”

and is divided into two equalities µ and ν in [13] (p.66):

(µ)
M = M ′

NM = NM ′ (ν)
M = M ′

MN = M ′N
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x =r y : A ∧B
FST (x) =µ1(r) FST (y) : A

x =r y : A ∧B
SND(x) =µ2(r) SND(y) : B

In the Appendix we give a list, for each type-forming operator, of rules of definition, in
the style of Bishop, Curry-Howard, and Martin-Löf, of what elements the type contains,
and when two elements are defined to be equal.

Term rewriting system for LND with equality. In [30] we have proved termi-
nation and confluence for the rewriting system arising out of the proof rules given for
the proposed natural deduction system for equality.

The idea is to analyse all possible occurrences of redundancies in proofs which involve
the rules of rewriting, and the most obvious case is the nested application of the rule
of symmetry. But there are a number of cases when the application of rewriting rules
is redundant, but which is not immediately obvious that there is a redundancy. Take,
for instance, the following case:

Definition 3.6 (reductions involving τ)

x =r y : A y =σ(r) x : A

x =τ(r,σ(r)) x : A
.tr x =ρ x : A

y =σ(r) x : A x =r y : A

y =τ(σ(r),r) y : A
.tsr y =ρ y : A

u =r v : A v =ρ v : A

u =τ(r,ρ) v : A
.trr u =r v : A

u =ρ u : A u =r v : A

u =τ(ρ,r) v : A
.tlr u =r v : A

Associated rewriting rule over the reason:
τ(r, σ(r)) .tr ρ
τ(σ(r), r) .tsr ρ
τ(r, ρ) .trr r
τ(ρ, r) .tlr r.

Below is another less obvious case of occurrence of redundancy:

Definition 3.7

a : A

[x : A]
...

b(x) =r g(x) : B

λx.b(x) =ξ(r) λx.g(x) : A→ B
→ -intr

APP (λx.b(x), a) =ν(ξ(r)) APP (λx.g(x), a) : B
→ -elim
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.mxl
a : A

b(a/x) =r g(a/x) : B

Associated rewriting rule:
ν(ξ(r)) .mxl r.

As an example:

Example 3.8

x =r y : A

i(x) =ξ1(r) i(y) : A+B

x =r y : A

y =σ(r) x : A

i(y) =ξ1(σ(r)) i(x) : A+B

i(x) =τ(ξ1(r),ξ1(σ(r))) i(x) : A+B

.tr
x =r y : A

x =ξ1(r) y : A+B
Associated rewriting:
τ(ξ1(r), ξ1(σ(r))) .tr ξ1(r).

Definition 3.9 (reductions involving ρ and σ)

x =ρ x : A

x =σ(ρ) x : A
.sr x =ρ x : A

x =r y : A

y =σ(r) x : A

x =σ(σ(r)) y : A
.sr x =r y : A

Associated rewritings:
σ(ρ) .sr ρ
σ(σ(r)) .sr r

Definition 3.10 (reductions involving τ)

x =r y : A y =σ(r) x : A

x =τ(r,σ(r)) x : A
.tr x =ρ x : A

y =σ(r) x : A x =r y : A

y =τ(σ(r),r) y : A
.tsr y =ρ y : A

u =r v : A v =ρ v : A

u =τ(r,ρ) v : A
.trr u =r v : A

u =ρ u : A u =r v : A

u =τ(ρ,r) v : A
.tlr u =r v : A
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Associated rewritings:
τ(r, σ(r)) .tr ρ
τ(σ(r), r) .tsr ρ
τ(r, ρ) .tsr r
τ(ρ, r) .tlr r

Note that the first two reductions identify the case in which a reason which is part
of a rewrite sequence meets its inverse.

These reductions can be generalized to transformations where the reasons r and σ(r)
(transf. 1 and 2) and r and ρ (transf. 3 and 4) appear in some context, as illustrated
by the following example:

Example 3.11

x =r y : A

i(r) =ξ1(r) i(y) : A+B

x =r y : A

y =σ(r) x : A

i(y) =ξ1(σ(r)) i(x) : A+B

i(x) =τ(ξ1(r),ξ1(σ(r))) i(x) : A+B

.tr

x : A

x =ρ x : A

i(x) =ξ1(ρ) i(x) : A+B
Associated rewriting:
τ(ξ1(r), ξ1(σ(r))) .tr ξ1(ρ)

For the general context C[ ]:
Associated rewritings:
τ(C[r], C[σ(r)]) .tr C[ρ]
τ(C[σ(r)], C[r]) .tsr C[ρ]
τ(C[r], C[ρ]) .trr C[r]
τ(C[ρ], C[r]) .tlr C[r]

Definition 3.12 (substitution rules)

u =r C[x] : A x =ρ x : A′

u =subL(r,ρ) C[x] : A
.slr u =r C[x] : A

x =ρ x : A′ C[x] =r z : A

C[x] =subR(ρ,r) z : A
.srr C[x] =r z : A

z =s C[y] : A y =r w : A′

z =subL(s,r) C[w] : D

y =r w : A′

w =σ(r) y : D′

z =subL(subL(s,r),σ(r)) C[y] : A
.sls z =s C[y] : A
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z =s C[y] : A y =r w : A′

z =subL(s,r) C[w] : A

y =r w : A′

w =σ(r) y : A′

z =subL(subL(s,r),σ(r)) C[y] : A
.slss z =s C[y] : A

x =s w : A′

x =s w : A′

w =σ(s) x : A′ C[x] =r z : A

C[w] =subR(σ(s),r) z : A

C[x] =subR(s,subR(σ(s),r)) z : A
.srs C[x] =r z : A

x =s w : A′

w =σ(s) x : A′
x =s w : A′ C[w] =r z : A

C[x] =subR(s,r) z : A

C[w] =subR(σ(s),subR(s,r)) z : A
.srrr C[w] =r z : A

Associated rewritings:
subL(C[r], C[ρ]) .slr C[r]
subR(C[ρ], C[r]) .srr C[r]
subL(subL(s, C[r]), C[σ(r)]) .sls s
subL(subL(s, C[σ(r)]), C[r]) .slss s
subR(s, subR(C[σ(s)], r)) .srs r
subR(C[σ(s)], subR(C[s], r)) .srrr r

Definition 3.13
βrewr-×-reduction

x =r y : A z : B

〈x, z〉 =ξ1(r) 〈y, z〉 : A×B
× -intr

FST (〈x, z〉) =µ1(ξ1(r)) FST (〈y, z〉) : A
× -elim

.mx2l x =r y : A

x =r x
′ : A y =s z : B

〈x, y〉 =ξ∧(r,s) 〈x′, z〉 : A×B
× -intr

FST (〈x, y〉) =µ1(ξ∧(r,s)) FST (〈x′, z〉) : A
× -elim

.mx2l x =r x
′ : A

x =r y : A z =s w : B

〈x, z〉 =ξ∧(r,s) 〈y, w〉 : A×B
× -intr

SND(〈x, z〉) =µ2(ξ∧(r,s)) SND(〈y, w〉) : B
× -elim

.mx2r z =s w : B

x : A z =s w : B

〈x, z〉 =ξ2(s) 〈x,w〉 : A×B
× -intr

SND(〈x, z〉) =µ2(ξ2(s)) SND(〈x,w〉) : B
× -elim
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.mx2r z =s w : B

Associated rewritings:
µ1(ξ1(r)) .mx2l1 r
µ1(ξ∧(r, s)) .mx2l2 r
µ2(ξ∧(r, s)) .mx2r1 s
µ2(ξ2(s)) .mx2r2 s

βrewr-+-reduction
a =r a

′ : A

i(a) =ξ1(r) i(a′) : A+B
+ -intr

[x : A]

f(x) =s k(x) : C

[y : B]

g(y) =u h(y) : C

D(i(a), x́f(x), ýg(y)) =µ(ξ1(r),s,u) D(i(a′), x́k(x), ýh(y)) : C
+ -elim

.mx3l
a =r a

′ : A

f(a/x) =s k(a′/x) : C

b =r b
′ : B

j(b) =ξ2(r) j(b′) : A+B
+ -intr

[x : A]

f(x) =s k(x) : C

[y : B]

g(y) =u h(y) : C

D(j(b), x́f(x), ýg(y)) =µ(ξ2(r),s,u) D(j(b′), x́k(x), ýh(y)) : C
+ -elim

.mx3r
b =s b

′ : B

g(b/y) =u h(b′/y) : C

Associated rewritings:
µ(ξ1(r), s, u) .mx3l s
µ(ξ2(r), s, u) .mx3r u

βrewr-Π-reduction

a : A

[x : A]

f(x) =r g(x) : B(x)

λx.f(x) =ξ(r) λx.g(x) : Πx : A.B(x)

APP (λx.f(x), a) =ν(ξ(r)) APP (λx.g(x), a) : B(a)

.mxl
a : A

f(a/x) =r g(a/x) : B(a)

Associated rewriting:
ν(ξ(r)) .mxl r

βrewr-Σ-reduction
a =r a

′ : A f(a) : B(a)

εx.(f(x), a) =ξ1(r) εx.(f(x), a′) : Σx : A.B(x)

[t : A, g(t) : B(t)]

d(g, t) =s h(g, t) : C

E(εx.(f(x), a), ǵt́d(g, t)) =µ(ξ1(r),s) E(εx.(f(x), a′), ǵt́h(g, t)) : C

.mxr
a =r a

′ : A f(a) : B(a)

d(f/g, a/t) =s h(f/g, a′/t) : C
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a : A f(a) =r i(a) : B(a)

εx.(f(x), a) =ξ2(r) εx.(i(x), a) : Σx : A.B(x)

[t : A, g(t) : B(t)]

d(g, t) =s h(g, t) : C

E(εx.(f(x), a), ǵt́d(g, t)) =µ(ξ2(r),s) E(εx.(i(x), a), ǵt́h(g, t)) : C

.mxl
a : A f(a) =r i(a) : B(a)

d(f/g, a/t) =s h(i/g, a/t) : C

Associated rewritings:
µ(ξ1(r), s) .mxr s
µ(ξ2(r), s) .mxl s

Definition 3.14 (ηrewr)
ηrewr- ×-reduction

x =r y : A×B
FST (x) =µ1(r) FST (y) : A

× -elim
x =r y : A×B

SND(x) =µ2(r) SND(y) : B
× -elim

〈FST (x), SND(x)〉 =ξ(µ1(r),µ2(r)) 〈FST (y), SND(y)〉 : A×B
× -intr

.mx x =r y : A×B
ηrewr- +-reduction

c =t d : A+B

[a1 =r a2 : A]

i(a1) =ξ1(r) i(a2) : A+B
+ -intr

[b1 =s b2 : B]

j(b1) =ξ2(s) j(b2) : A+B
+ -intr

D(c, á1i(a1), b́1j(b1)) =µ(t,ξ1(r),ξ2(s)) D(d, á2i(a2), b́2j(b2))
+-elim

.mxx c =t d : A+B

Π-ηrewr-reduction
[t : A] c =r d : Πx : A.B(x)

APP (c, t) =ν(r) APP (d, t) : B(t)
Π-elim

λt.APP (c, t) =ξ(ν(r)) λt.APP (d, t) : Πt : A.B(t)
Π-intr

.xmr c =r d : Πx : A.B(x)
where c and d do not depend on x.

Σ-ηrewr-reduction

c =s b : Σx : A.B(x)

[t : A] [g(t) =r h(t) : B(t)]

εy.(g(y), t) =ξ2(r) εy.(h(y), t) : Σy : A.B(y)
Σ-intr

E(c, ǵt́εy.(g(y), t)) =µ(s,ξ2(r)) E(b, h́t́εy.(h(y), t)) : Σy : A.B(y)
Σ-elim

.mxlr c =s b : Σx : A.B(x)

Associated rewritings:
ξ(µ1(r), µ2(r)) .mx r
µ(t, ξ1(r), ξ2(s)) .mxx t
ξ(ν(r)) .xmr r
µ(s, ξ2(r)) .mxlr s
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Definition 3.15 (σ and τ)

x =r y : A y =s w : A

x =τ(r,s) w : A

w =σ(τ(r,s)) x : A
.stss

y =s w : A

w =σ(s) y : A

x =r y : A

y =σ(r) x : A

w =τ(σ(s),σ(r)) x : A

Associated rewriting:
σ(τ(r, s)) .stss τ(σ(s), σ(r))

Definition 3.16 (σ and sub)

x =r C[y] : A y =s w : A′

x =subL(r,s) C[w] : A

C[w] =σ(subL(r,s)) x : A
.ssbl

y =s w : A′

w =σ(s) y : A′
x =r C[y] : A

C[y] =σ(r) x : A

C[w] =subR(σ(s),σ(r)) x : A

x =r y : A′ C[y] =s w : A

C[x] =subR(r,s) w : A

w =σ(subR(r,s)) C[x] : D
.ssbr

C[y] =s w : A

w =σ(s) C[y] : A

x =r y : A′

y =σ(r) x : A′

w =subL(σ(s),σ(r)) C[x] : A

Associated rewritings:
σ(subL(r, s)) .ssbl subR(σ(s), σ(r))
σ(subR(r, s)) .ssbr subL(σ(s), σ(r))

Definition 3.17 (σ and ξ)

x =r y : A

i(x) =ξ1(r) i(y) : A+B

i(y) =σ(ξ1(r)) i(x) : A+B
.sx

x =r y : A

y =σ(r) x : A

i(y) =ξ1(σ(r)) i(x) : A+B

x =r y : A z =s w : B

〈x, z〉 =ξ(r,s) 〈y, w〉 : A×B
〈y, w〉 =σ(ξ(r,s)) 〈x, z〉 : A×B

.sxss

x =r y : A

y =σ(r) x : A

z =s w : B

w =σ(s) z : B

〈y, w〉 =ξ(σ(r),σ(s)) 〈x, z〉 : A×B

[x : A]

f(x) =s g(x) : B(x)

λx.f(x) =ξ(s) λx.g(x) : Πx : A.B(x)

λx.g(x) =σ(ξ(s)) λx.f(x) : Πx : A.B(x)
.smss

[x : A]

f(x) =s g(x) : B(x)

g(x) =σ(s) f(x) : B(x)

λx.g(x) =ξ(σ(s)) λx.f(x) : Πx : A.B(x)

Associated rewritings:
σ(ξ(r)) .sx ξ(σ(r))
σ(ξ(r, s)) .sxss ξ(σ(r), σ(s))
σ(ξ(s) .smss ξ(σ(s))
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Definition 3.18 (σ and µ)

x =r y : A×B
FST (x) =µ1(r) FST (y) : A

FST (y) =σ(µ1(r)) FST (x) : A
.sm

x =r y : A×B
y =σ(r) x : A×B

FST (y) =µ1(σ(r)) FST (x) : A

x =r y : A×B
SND(x) =µ2(r) SND(y) : A

SND(y) =σ(µ2(r)) SND(x) : A
.sm

x =r y : A×B
y =σ(r) x : A×B

SND(y) =µ2(σ(r)) SND(x) : A

x =s y : A f =r g : A→ B

APP (f, x) =µ(s,r) APP (g, y) : B

APP (g, y) =σ(µ(s,r)) APP (f, x) : B

.smss

x =s y : A

y =σ(s) x : A

f =r g : A→ B

g =σ(r) f : A→ B

APP (g, y) =µ(σ(s),σ(r)) APP (f, x) : B

x =r y : A+B

[s : A]
...

d(s) =u f(s) : C

[t : B]
...

e(t) =v g(t) : C

D(x, śd(s), t́e(t)) =µ(r,u,v) D(y, śf(s), t́g(t)) : C

D(y, śf(s), t́g(t)) : C =σ(µ(r,u,v)) D(x, śd(s), t́e(t)) : C

.smsss

x =r y : A+B

y =σ(r) x : A+B

[s : A]

d(s) =u f(s) : C

f(s) =σ(u) d(s) : C

[t : B]

e(t) =v g(t) : C

g(t) =σ(v) e(t) : C

D(y, śf(s), t́g(t)) =µ(σ(r),σ(u),σ(v)) D(x, śd(s), t́e(t)) : C

e =s b : Σx : A.B(x)

[t : A, g(t) : B(t)]

d(g, t) =r f(g, t) : C

E(e, ǵt́d(g, t)) =µ(s,r) E(b, ǵt́f(g, t)) : C

E(b, ǵt́f(g, t)) =σ(µ(s,r)) E(e, ǵt́d(g, t)) : C

.smss

e =s b : Σx : A.B(x)

b =σ(s) e : Σx : A.B(x)

[t : A, g(t) : B(t)]

d(g, t) =r f(g, t) : C

f(g, t) =σ(r) d(g, t) : C

E(b, ǵt́f(g, t)) =µ(σ(s),σ(r)) E(e, ǵt́d(g, t)) : C

Associated rewritings:
σ(µ1(r)) .sm µ1(σ(r))
σ(µ2(r)) .sm µ2(σ(r))
σ(µ(s, r)) .smss µ(σ(s), σ(r))
σ(µ(r, u, v)) .smsss µ(σ(r), σ(u), σ(v))
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Definition 3.19 (τ and sub)

x =r C[y] : A y =s w : A′

x =subL(r,s) C[w] : A C[w] =t z : A

x =τ(subL(r,s),t) z : A

.tsbll
x =r C[y] : A

y =s w : A′ C[w] =t z : A

C[y] =subR(s,t) z : A

x =τ(r,subR(s,t)) z : A

y =s w : A C[w] =t z : A

C[y] =subR(s,t) z : A z =u v : A

C[y] =τ(subR(s,t),u) v : A

.tsbrl
y =s w : D′

C[w] =t z : A z =u v : A

C[w] =τ(t,u) v : A

C[y] =subR(s,τ(t,u)) v : A

x =r C[z] : A

C[z] =ρ C[z] : A z =s w : A′

C[z] =subL(ρ,s) C[w] : A

x =τ(r,subL(ρ,s)) C[w] : A

.tsblr
x =r C[z] : A z =s w : A′

x =subL(r,s) C[w] : A

x =r C[w] : A

w =s z : A′ C[z] =ρ C[z] : A

C[w] =subR(s,ρ) C[z] : A

x =τ(r,subR(s,ρ)) C[z] : A

.tsbrr
x =r C[w] : D w =s z : A′

x =subL(r,s) C[z] : A

Definition 3.20 (τ and τ)

x =t y : A y =r w : A

x =τ(t,r) w : A w =s z : A

x =τ(τ(t,r),s) z : A

.tt
x =t y : A

y =r w : A w =s z : A

y =τ(r,s) z : A

x =τ(t,τ(r,s)) z : A

Associated rewritings:
τ(subL(r, s), t) .tsbll τ(r, subR(s, t))
τ(subR(s, t), u)) .tsbrl subR(s, τ(t, u))
τ(r, subL(τ, s)) .tsblr subL(r, s)
τ(r, subR(s, τ)) .tsbrr subL(r, s)
τ(τ(t, r), s) .tt τ(t, τ(r, s))
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By analysing all cases of redundant proofs involving equality we arrive at following
set of associated rewriting rules. (NB. In the same way the definitional equalities
(coming from rewriting rules) over terms of the λ calculus had to be given names –
β, η, ξ, µ, etc. –, we will need to assign a name to each rewriting rule for terms
representing computational paths. For the lack of a better naming choice at this point,
we have tried to use abbreviations related to the operations involved.)

Definition 3.21 (LNDEQ-TRS)
1. σ(ρ) .sr ρ
2. σ(σ(r)) .ss r
3. τ(C[r], C[σ(r)]) .tr C[ρ]
4. τ(C[σ(r)], C[r]) .tsr C[ρ]
5. τ(C[r], C[ρ]) .rrr C[r]
6. τ(C[ρ], C[r]) .lrr C[r]
7. subL(C[r], C[ρ]) .slr C[r]
8. subR(C[ρ], C[r]) .srr C[r]
9. subL(subL(s, C[r]), C[σ(r)]) .sls s
10. subL(subL(s, C[σ(r)]), C[r]) .slss s
11. subR(C[s], subR(C[σ(s)], r)) .srs r
12. subR(C[σ(s)], subR(C[s], r)) .srrr r
13. µ1(ξ1(r)) .mx2l1 r
14. µ1(ξ∧(r, s)) .mx2l2 r
15. µ2(ξ∧(r, s)) .mx2r1 s
16. µ2(ξ2(s)) .mx2r2 s
17. µ(ξ1(r), s, u) .mx3l s
18. µ(ξ2(r), s, u) .mx3r u
19. ν(ξ(r)) .mxl r
20. µ(ξ2(r), s) .mxr s
21. ξ(µ1(r), µ2(r)) .mx r
22. µ(t, ξ1(r), ξ2(s)) .mxx t
23. ξ(ν(r)) .xmr r
24. µ(s, ξ2(r)) .mx1r s
25. σ(τ(r, s)) .stss τ(σ(s), σ(r))
26. σ(subL(r, s)) .ssbl subR(σ(s), σ(r))
27. σ(subR(r, s)) .ssbr subL(σ(s), σ(r))
28. σ(ξ(r)) .sx ξ(σ(r))
29. σ(ξ(s, r)) .sxss ξ(σ(s), σ(r))
30. σ(µ1(r)) .sm µ1(σ(r))
31. σ(µ2(r)) .sm µ2(σ(r))
32. σ(µ(s, r)) .smss µ(σ(s), σ(r))
33. σ(µ(r, u, v)) .smsss µ(σ(r), σ(u), σ(v))
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34. τ(r, subL(ρ, s)) .tsbll subL(r, s)
35. τ(r, subR(s, ρ)) .tsbrl subL(r, s)
36. τ(subL(r, s), t) .tsblr τ(r, subR(s, t))
37. τ(subR(s, t), u) .tsbrr subR(s, τ(t, u))
38. τ(τ(t, r), s) .tt τ(t, τ(r, s))
39. τ(C[u], τ(C[σ(u)], v)) .tts v
40. τ(C[σ(u)], τ(C[u], v)) .tst u.

3.3 Termination property for the LNDEQ-TRS

Theorem 3.22 (Termination property for LNDEQ-TRS) LNDEQ-TRS is termi-
nating.

The proof of the termination property for LNDEQ-TRS is obtained by using a
special kind of ordering: recursive path ordering , proposed by N. Dershowitz in 1982
[10]:

Definition 3.23 (recursive path ordering) Let > be a partial ordering on a set of
operators F. The recursive path ordering >∗ on the set T(F) of terms over F is defined
recursively as follows:

s = f(s1, . . . , sm) >∗ g(t1, . . . , tn) = t,

if and only if

1. f = g and {s1, . . . , sm} �∗ {t1, . . . , tn}, or

2. f > g and {s} �∗ {t1, . . . , tn}, or

3. f � g and {s1, . . . , sm} �∗ or = {t}

where �∗ is the extension of >∗ to multisets.

Note that this definition uses the notion of ordering on multisets. A given partial
ordering > on a set S may be extended to a partial ordering � on finite multisets of
elements of S, wherein a multiset is reduced by removing one or more elements and
replacing them with any finite number of elements, each oh which is smaller than one
of the elements removed [10].

The proof of termination property via a recursive path ordering is made by showing
that for all rules e→ d of the system, e >∗ d.

The recursive path ordering can be extended in order to allow some function of a
term f(t1, . . . , tn) to play the role of the operator f . As explained in [10], we can consider
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the k-th operand tk to be the operator, and compare two terms by first recursively
comparing their k-th operands.

In the proof of termination property for the LNDEQ-TRS, we use the precedence
ordering on the rewrite operators for the rules from 1 to 32 defined as follows:

σ > τ > ρ,
σ > ξ,
σ > ξ∧,
σ > ξ1,
σ > ξ2,
σ > µ,
σ > µ1,
σ > µ2,
σ > subL,
σ > subR,
τ > subL

We can combine the recursive path idea used for the rules 1–34 with an extension
of recursive path ordering for rules from 35 to 37, where the first operand is used as
operator. When comparing two “τ” and “τ with subR”, we use the first operand as
operator. This proof is similar to Example (H) given in pp. 299–300 of [10].

The confluence proof is built by the Knuth–Bendix superposition algorithm applied
to the rules of the system.

We have proved termination and confluence of the rewriting system LNDEQ-TRS
[28, 29, 30]. As a matter of fact, rules 38 and 39 came out of the Knuth–Bendix com-
pletion procedure applied to the the rewriting system. As we have previously pointed
out, although the rewriting system is terminating and confluent, we have observed an
interesting phenomenon here: there may be more than one normal proof of an equality
statement. This is not a contradiction since the confluence property only says that the
term for the equality reason can be brought to a unique normal form regardless of the
order in which it is reduced. But there may be a different, yet normal/canonical, proof
of the same equality statement.

3.4 Rewrite equality

As we have just seen, LNDEQ-TRS gives us a total of 39 reductions rules. We call
each rule as a rewrite rule (abbreviation: rw-rule). We have the following definition:

Definition 3.24 (rw-contraction, rw-reduction) Let s and t be computational paths.
We say that s �1rw t (read as: a rw-contracts to b) iff we can obtain t from s by an
application of only one rw-rule. If s can be reduced to t by a finite number of rw-
contractions, then we say that s�rw t (read as s rw-reduces to t).
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Definition 3.25 (rw-equality) Let s and t be computational paths. We say that
s =rw t (read as: s is rw-equal to t) iff t can be obtained from s by a finite (per-
haps empty) series of rw-contractions and reversed rw-contractions. In other words,
s =rw t iff there exists a sequence R0, ...., Rn, with n ≥ 0, such that

(∀i ≤ n− 1)(Ri �1rw Ri+1 or Ri+1 �1rw Ri)
R0 ≡ s, Rn ≡ t

In the introduction, specifically in definition 1.3 and definition 1.4, we showed that
an application of a rw-rule yields a term of the identity type. For example, the rule
σ(ρ)�sr ρ, with x =ρ x : A, yields a term of type IdIdA(x,x)(σ(ρ), ρ). Since rw-equalities
are just applications of rw-rules (or inverse rw-rules), then one could think of an rw-
equality as a term of the identity type. That way, if we have paths s(a, b) : IdA(a, b),
t(a, b) : IdA(a, b) and an rw-equality θ such that s =rwθ t, then θ is the following term
of the identity type: θ : IdIdA(a,b)(s, t).

In the sequel, we use rw-equality to develop a groupoid model of a type.

4 Uniqueness of identity proofs

In this section, our objective is to show that the approach introduced in this work, i.e.,
the identity type as the type of computational paths, refutes the Uniqueness of Identity
Proofs (UIP) property. To do that, we first introduce a groupoid model of a type using
computational paths.

4.1 Groupoid structure

The groupoid structure uses the idea that computational paths are terms of the identity
type. That way, given a type A, objects are seen as elements a, b : A of the type and
morphisms are terms of the identity type, i.e., computational paths a =s b between the
objects. This structure will be referred to as Arw.

Before we formally define this structure, we need to make clear that we are working
using the concept of a weak category. As we are going to check, the groupoid laws will
hold only up to rw-equality. In this sense, we use the term weak to indicate this fact,
i.e., that the laws will not hold ‘on the nose’, but only up to rw-equality. With that,
we first show that the structure is a weak category

Proposition 4.1 Arw is a weak category

Proof. First, we need to define compositions of morphisms. Given two paths s : a→ b
and t : b → c, then we can compose them to obtain t ◦ s = τ(s, t). The identity arrow
1a is defined as 1a = ρa. We now need to check the associative and identity laws. The
associativity is given by a straightforward application of rule tt:
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τ(τ(s, r), t) =rwtt τ(s, τ(r, t)).

The identity laws are given by straightforward applications of rules tlr and trr:

s ◦ 1a = s ◦ ρa = τ(ρa, s) =rwtlr s
1b ◦ s = ρb ◦ s = τ(s, ρb) =rwtrr s

As one can clearly notice, the rules only hold up to rw-equality. In this sense, Arw
is a weak category.

�

To complete our groupoid structure, we need to prove that, in fact, Arw is a weak
groupoid. First, let’s recall the concept of categorical groupoid [4]:

Definition 4.2 (Isomorphism) Let f : A → B be an arrow of any category. f is
called an isomorphism if there exists a g : B → A such that g ◦ f = 1A and f ◦ g = 1B.
g is called the inverse of f and can be written as f−1.

Definition 4.3 (Groupoid) A groupoid is a category in which every arrow is an iso-
morphism.

Proposition 4.4 Arw is a weak groupoid.

Proof. We need to show that every path s : a → b of Arw is an isomorphism. To
do that, we need to find an inverse s′. Just do s′ = σ(s), then, by straightforward
applications of rules tr and tsr, we have:

s ◦ s′ = s ◦ σ(s) = τ(σ(s), s) =rwtsr ρb
s′ ◦ s = σ(s) ◦ s = τ(s, σ(s)) =rwtr ρa

That way, the groupoid laws hold up to rw-equality. We conclude that Arw is a
weak groupoid.

�

4.2 Refutation of UIP

We use Arw to show that our approach refutes the principle of uniqueness of identity
proofs. Hofmann and Streicher [15] defines UIP (A) as the type that is inhabited iff,
given a, b : A, and s, s′ : IdA(a, b), then we have a witness p : IdIdA(a,b)(s, s

′). In this
sense, every pair of equality proofs (s, s′) are propositionally equal. Using computational
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paths, one can interpret that UIP (A) is inhabited iff given terms a, b : A and any paths
a =s b and a =t b, then s =rw t.

Using the groupoid interpretation, if UIP holds, then every type A is a trivial
groupoid structure in which there is only one morphism between every pair of objects
[15]. To show that UIP is false, one only needs to construct an A such that there is
more than one morphism between a pair of objects (i.e., there is at least one pair of
objects a, b : A and a pair of paths s and t between them such that s 6=rw t). To achieve
this objective, consider the type A and that (λx.(λy.yx)(λw.zw))v : A:

Theorem 4.5 The type UIP is empty.

Proof. We construct Arw:

(λx.(λy.yx)(λw.zw))v

(λx.(λy.yx)x)v

(λy.yv)z

zv

(λx.(λw.zw)x)v

(λw.zw)v

η

β

β

τ(τ(η, β), β) τ(τ(β, β), η)

β

β

η

As depicted above, there are (at least) two possible paths between (λx.(λy.yx)(λw.zw))v
and zv. The first path is given by τ(τ(η, β), β) and the second by τ(τ(β, β), η). More-
over, looking at all rw-rules, there is no rule that establishes the rw-equality between
these two paths. That way, Arw is not a trivial groupoid and thus, UIP is empty. �

With that, we conclude that our approach based on computational paths refutes
the principle of uniqueness of identity proofs.
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5 Conclusion

Motivated by looking at equalities in type theory as arising from the existence of compu-
tational paths between two formal objects, our purpose here was to offer an alternative
perspective (to the one prevailing on the literature) on the role and the power of the
so-called identity types, as well as of the notion of propositional equality as formalised
in the so-called Curry-Howard functional interpretation. We started by recalling our
previous observation [41] pertaining to the fact that the formulation of the identity type
by Martin-Löf, both in the intensional and in the extensional versions, did not take into
account an important entity, namely, identifiers for sequences of rewrites, and this has
led to a false dichotomy.

Next, by considering as sequences of rewrites and substitution, we have shown that it
comes a rather natural fact that two (or more) distinct proofs may be yet canonical and
are none to be preferred over one another. By looking at proofs of equality as rewriting
(or computational) paths this approach fits well with the recently proposed connections
between type theory and homotopy theory via identity types, since elements of identity
types will be, concretely, paths (or homotopies). In the end, our formulation of a proof
theory for propositional equality is still very much in the style of type-theoretic identity
types which, besides being a reformulation of Martin-Löfs own intensional identity types
into one which dissolves what we see as a false dichotomy, turned out to validate the
groupoid laws as uncovered by Hofmann & Streicher as well as to refute the principle
of uniqueness of identity proofs.
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Appendices

A Definitional Equality Rules

(β) a : A

[x : A]

b : B
(λx.b)a =β b[a/x] : B

(η)
f : (Πx : A)B

λx.APP (f, x) =η f : (Πx : A)B
(x /∈ FV (f))

(ρ)
a : A

a =ρ a : A

(µ)
a =s a

′ : A f : (Πx : A)B

APP (f, a) =µ(s) APP (f, a′) : B
(τ)

a =s a
′ : A a′ =t a

′′ : A

a =τ(s,t) a′′ : A

(ν)
a : A f =s f

′ : (Πx : A)B

APP (f, a) =ν(s) APP (f ′, a) : B
(σ)

a =s a
′ : A

a′ =σ(s) a : A

(ξ)

[x : A]

f(x) =s f ′(x) : B

λx.f(x) =ξ(s) λx.f ′(x) : (Πx : A)B

(µ1)
p =s q : A×B

FST (p) =µ1(s) FST (q) : A
(µ2)

p =s q : A×B
SND(p) =µ2(s) SND(q) : B

(ξ∧)
a =r a

′ : A b =s b
′ : B

〈a, b〉 =ξ∧(r,s) 〈a′, b′〉 : A×B

(ξ1)
a =s a

′ : A b : B

〈a, b〉 =ξ1(s) 〈a′, b〉 : A×B
(ξ2)

a : A b =s b
′ : B

〈a, b〉 =ξ2(s) 〈a, b′〉 : A×B

(ξ1)
a =s a

′ : A

i(a) =ξ1(s) i(a′) : A+B
(ξ2)

b =s b
′ : B

j(b) =ξ2(s) j(b′) : A+B
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(ν)
p =s q : A+B

[x : A]

f(x) : C

[y : B]

g(y) : C

D(p, x́f(x), ýg(y)) =ν(s) D(q, x́f(x), ýg(y)) : C

(µ1)
p : A+B

[x : A]

f(x) =s f ′(x) : C

[y : B]

g(y) : C

D(p, x́f(x), ýg(y)) =µ1(s) D(p, x́f ′(x), ýg(y)) : C

(µ2)
p : A+B

[x : A]

f(x) : C

[y : B]

g(y) =s g′(y) : C

D(p, x́f(x), ýg(y)) =µ2(s) D(p, x́f(x), ýg′(y)) : C

(ξ1)
a =s a

′ : A b(a) : B(a)

εx.(b(x), a) =ξ1(s) εx.(b(x), a′) : (Σx : A)B(x)

(ξ2)
a : A b(a) =s b

′(a) : B(a)

εx.(b(x), a) =ξ2(s) εx.(b′(x), a) : (Σx : A)B(x)

(ν)
p =s q : (Σx : A)B(x)

[t : A, f(t) : B(t)]

h(t, f) : C

E(p, f́ t́h(t, f)) =ν(s) E(q, f́ t́h(t, f)) : C
(µ)

p : (Σx : A)B(x)

[t : A, f(t) : B(t)]

h(t, f) =s h′(t, f) : C

E(p, f́ t́h(t, f)) =µ(s) E(p, f́ t́h′(t, f)) : C

B Function extensionality

A proof of (weak) Function Extensionality:
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